Construction of Polyhedra Whose Vertices are Points on Curve Which Lying on Lemniscatic Torus with Mathematica

Ricardo Velezmoro-León, Robert Ipanaqué-Chero, Marcela Velásquez V. Fernández, Jorge Jimenez Gomez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Polyhedra are widely used in art, science and technology. Faced with this situation, the following research question is formulated: Can new polyhedral structures be generated from another mathematical object such as a lemniscatic torus? For this question, the results we obtained are two particular cases whose vertices are points that belong to curves that lie on a lemniscatic torus: the first, a new polyhedron that has regular trapezoids in the equatorial zone, and the second, one that has triangles equal to each other. For both polyhedra, there exists an antipodal symmetry in the Arctic and Antarctic zones. Emphasis is placed on the construction of two convex polyhedra above mentioned: a one with 18-faces and other with 36-faces, using the scientific software Mathematica v.11.2. We also determine their total areas which respectively approximate 9.51 R2 and 10.44 R2. Likewise, the volume of each one is approximately 2.41 R3 and 4.19 R3, respectively. Moreover, they being inscribed in a sphere of radius R, and their opposite faces are not parallel.

Idioma originalInglés
Título de la publicación alojadaComputational Science and Its Applications – ICCSA 2021 - 21st International Conference, Proceedings
EditoresOsvaldo Gervasi, Beniamino Murgante, Sanjay Misra, Chiara Garau, Ivan Blecic, David Taniar, Bernady O. Apduhan, Ana Maria Rocha, Eufemia Tarantino, Carmelo Maria Torre
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas3-17
Número de páginas15
ISBN (versión impresa)9783030869595
DOI
EstadoPublicada - 2021
Evento21st International Conference on Computational Science and Its Applications, ICCSA 2021 - Virtual, Online
Duración: 13 set. 202116 set. 2021

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen12950 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia21st International Conference on Computational Science and Its Applications, ICCSA 2021
CiudadVirtual, Online
Período13/09/2116/09/21

Huella

Profundice en los temas de investigación de 'Construction of Polyhedra Whose Vertices are Points on Curve Which Lying on Lemniscatic Torus with Mathematica'. En conjunto forman una huella única.

Citar esto