Modelado y predicción del fenómeno el niño en piura, perú mediante redes neuronales artificiales usando matlab

Miguel Jiménez-Carrión, Flabio Gutiérrez-Segura, Jorge Celi-Pinzón

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

Artificial neural networks have been applied to climatic precipitation data, including surface sea temperatures in different areas classified as El Niño, and speed of trade winds with the purpose of modeling and predicting the climate phenomenon six months in advance to its appearance. The study was done in Piura, Peru. A preliminary analysis of the information is performed to determine the degree of correlation between variables. A model in two phases was later designed. In the first phase, neural networks using MatLab were used to model variables as time series and, in the second phase, a neural network was designed to simulate the nature of rainfall in Piura. The study shows that neural networks represents a highly reliable technique to find a pattern of precipitation and then for predicting the phenomenon with probability of 98.4% in the training step and 100% in the predicting step for the first semester of 2016.

Título traducido de la contribuciónModeling and prediction of el niño in piura using artificial neuronal networks
Idioma originalEspañol
Páginas (desde-hasta)303-318
Número de páginas16
PublicaciónInformacion Tecnologica
Volumen29
N.º4
DOI
EstadoPublicada - ago. 2018

Palabras clave

  • Artificial intelligence
  • El Niño
  • Modeling
  • Neuronal networks
  • Prediction

Huella

Profundice en los temas de investigación de 'Modelado y predicción del fenómeno el niño en piura, perú mediante redes neuronales artificiales usando matlab'. En conjunto forman una huella única.

Citar esto